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Abstract 

We have successfully ported the open source VAMPIRE software package to the UK 
ARCHER supercomputing service. During the project we implemented major 
changes to the data input and output routines in the code removing the previous 
bottlenecks of generating snapshots of the atomic scale magnetic configuration from 
a simulation. The new output code utilizes the full capabilities of the parallel file 
system on ARCHER achieving effective output bandwidths in excess of 30 GB/s. We 
have demonstrated the new capabilities of the code by simulating ultrafast magnetic 
domain wall dynamics in a system of over 918,000,000 Fe and Gd atoms. 

Introduction 

Magnetic materials are essential to a wide range of technologies, from data storage to 
cancer treatment to permanent magnets used in wind generators. New developments 
in magnetic materials promise huge increases in performance of devices but progress 
is limited by our understanding of magnetic properties at the atomic scale. Atomistic 
spin dynamics simulations[1] provide a natural way to study magnetic processes on 
the nanoscale, treating each atom as possessing a localised spin magnetic moment. 
The localised nature of the spins allows the simulation of a range of complex physical 
phenomena such as phase transitions, laser heating, antiferromagnet dynamics in 
complex systems such as nanoparticles, surfaces and interfaces. However, such 
approaches are computationally expensive, requiring parallel computers to perform 
simulations of more than a few thousand atoms. The VAMPIRE code [1,2] is an open 
source software package to perform parallel atomistic simulations of magnetic 
materials. The code is written in a mixture of functional and object oriented C++ 
with a modular structure to allow new features to be added to the code.  
The aims of this eCSE project were to optimise the VAMPIRE code on the ARCHER 
system and improve the data input/output routines to enable configuration data to 
be extracted from the simulation to see the time evolution of the atomic spin 
configuration in time.  
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Porting to ARCHER and compiler optimisation  

The first stage of the project was to compile the VAMPIRE code on ARCHER and 
compare performance of Cray, Intel and GNU compilers. The code is written in 
standard compliant C++ with no external libraries other the MPI and required no 
changes to compile correctly with the different compilers. The code was also verified 
and produced identical results independent of the compiler suite used and level of 
optimization. The results of compiler optimization found that for optimal settings 
the GNU g++ compiler was around 17% faster than Cray and 10% faster than Intel 
for small problem sizes, with the difference narrowing to 4% for both for larger 
problem sizes. The code is not particularly well vectorised, perhaps suggesting that 
the Intel and Cray compilers slightly over-optimise. This reflects our previous 
experience when comparing other compilers, also finding that g++ generates optimal 
performance. To make it as straightforward as possible to compile the code on 
ARCHER we have added a tuned make target in the makefile so that loading the GNU 
compiler environment and typing make archer-parallel is all that is required to 
generate an optimal binary on the ARCHER system. Compilation takes around 1 
minute using parallel make. 

Previous implementation of data input and output 

Prior to this eCSE project the output was naively implemented as a one-file-per-
process using C++ streams as implemented in the C++ standard library. Each 
processor in a simulation would create a unique output file and output the atomic 
spin unit vectors in plain text format. While robust and easy to use, C++ streams 
have generally high processing overheads that make them unsuitable for high 
performance data input and output. In the VAMPIRE code the processing overheads 
meant that a typical data rate for output to disk was around 5kB/s on optimal 
hardware, for example a Solid State Drive (SSD). This poor performance was also 
hindered by the use of std::endl C++ constructs, which cause a flush of the output 
buffer to disk after every line of text. Atomistic simulations tend to be relatively 
compact in terms of atomistic level data, with computational complexity coming from 
the requirement for small integration time steps (0.1 fs) and long integration times 
(nanoseconds). This limits most typical simulations to between 10,000 and 100,000 
atoms with larger simulations in the 10 million atom range, with associated 
configuration data sizes of between 24kB and 24MB in total for each snapshot. The 
MPI parallelisation of the code shows good scalability to thousands of cores (for tens 
of millions of atoms scale problems), but here the small amounts of data and large 
number of output processes made the one file per process output spectacularly 
inefficient, preventing the output of configuration data from the simulation. 

The input data for the code consists of a small number of free format plain text files 
containing keywords and values for running the program. The files include 
information such as crystal structures, magnetic material parameters, system sizes, 
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runtime parameters and details of data output. In the previous implementation these 
input files were read by all processors to initialise the information on each process. 
For small core counts the overheads were trivial, but for large core counts the opening 
and processing of two text files per process took longer than the simulation, leading 
to a large bottleneck for large scale simulations on large core counts (6144 cores). 

New implementation of data input 

To resolve the poor scalability of data input, we developed a new method to read the 
plain text files on a single master process and broadcast its contents to all processes 
in the simulation. In C++ text data is typically handled with std::string objects, 
which have automatic memory management and text processing functions built in 
(for example conversion to uppercase, stripping out un-needed characters). However, 
std::string objects are not directly compatible with the MPI library and so the data 
had to be converted into a character array prior to an MPI_BROADCAST call. Our 
implementation takes advantage of the C++ standard library streams which allows a 
stream of text from a file (fstream) or a text string (sstream) to be treated identically.  
 
The first part of the implementation is to replace the previous call to open the input 
file: 
 
// file stream to load contents of input file as a stream of text 
std::ifstream inputfile; 
 
// open input file  
inputfile.open( filename ); 

 
with an updated function call to get_string(filename) which instead returns a 
stringstream which can be processed in an identical way and requires no other code 
changes to be made: 
 
// string stream to contain contents of input file as a stream of text 
std::stringstream inputfile; 
 
// fill contents of string stream with a string obtain 
// from the get_string() function 
inputfile.str (get_string( filename ) ); 
 
The implementation of the get_string() function then only reads the input file on 
the root process, converts the string stream to characters and then broadcasts the 
contents to other processors. The generality of this code can easily be used in other 
packages and codes (licenced under the permissive BSD licence). 
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std::string get_string(std::string const filename){ 
 
   const int root = 0; // define root process id 
 
   int len; // number of characters in string (needed by all processes) 
   std::vector<char> message; // character array (needed by all)  
 
   // Read in file on root process 
   if (vmpi::my_rank == root){ 
 
      // ifstream declaration 
      std::ifstream inputfile; 
 
      // Open file read only 
      inputfile.open(filename.c_str()); 
 
      // Check for opening 
      if(!inputfile.is_open()){ 
         err::vexit();   // exit code with an error 
 } 
 
      // load contents of file into string 
      std::string contents( (std::istreambuf_iterator<char>(inputfile)), 

                       std::istreambuf_iterator<char>() ); 
 
      // copy string contents to character array 
      std::copy(contents.begin(), contents.end(), 
                std::back_inserter(message)); 
 
      len = contents.length(); // get length of file in chars 
  
   } 
 
   #ifdef MPICF 
      // broadcast character length to all processors 
      MPI_Bcast(&len, 1, MPI_INT, root, MPI_COMM_WORLD); 
 
      message.resize(len); // resize message on all processors 
 
      // broadcast file contents to all processors  
      MPI_Bcast(&message[0], message.size(), MPI_CHAR,  
                root, MPI_COMM_WORLD); 
   #endif 
   std::string str(message.begin(),message.end());  
   return str; // return message as string 
 
} 

 
The new input file implementation now scales to thousands of processors and since 
other parts of the initialisation code are fully parallelised the system initialisation 
now only takes a few seconds for typical-sized problems.  
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New implementation of data output 

Unlike the new implementation for data input, the data output routines required a 
complete rewrite from scratch, including both atomic coordinate data (outputted 
once at the start of the simulation) and atomic spin data (a unit vector for each atom 
outputted in a series of snapshots during the simulation). Prior to performing the 
output modifications the data output code was reorganised into the new modular 
structure for the code which has directly contributed to the sustainability and future 
maintainability of the code. This enabled a more straightforward implementation of 
the new configuration output module in the VAMPIRE code. 

The original proposal was to implement a new output method using MPI-IO routines 
found in the MPI library. However, in light of more recent data from the ARCHER 
team showing that file-per-process can have optimal performance for certain file 
sizes[3], we opted for a more flexible approach and have implemented three different 
output parallel output methods within the VAMPIRE code: file-per-process; single-shared-
file with MPI-IO; and file-per-node. The advantage of this flexible approach is the ability 
to tune performance for different problem sizes and numbers of processor cores. In 
addition, there is no requirement for a parallel file system allowing the improvements 
to be used on a wide range of different hardware from desktop machines through to 
national scale resources. Each of the output methods is user configurable from the 
main program input file allowing easy selection of the output method at runtime.  

File-per-process 

The first method is a slight modification of the original output scheme where each 
process outputs its own data to disk but now in binary mode rather than as text using 
C++ streams. In this mode a peak output bandwidth of 7.5GB/s was achieved for 
output on two nodes (48 cores) for a large problem (3GB total data size). A particular 
limitation of this method for simulations using VAMPIRE is the generally small 
problem size, meaning that the data per process is only a MB or so for typical problem 
sizes with a reasonable number of total time steps. Therefore, the file-per-process 
output scheme is only practically useful for running large problems on a small number 
of processor cores. However, this would be regarded as an unusual simulation pattern 
and not typically requiring ARCHER and being better suited to regional or local 
resources. Nevertheless, comparing to the original output method the new binary 
mode is over one million times faster than the previous implementation, and so at 
least enables good performance for I/O on a range of different resources. 

Single-shared-file using Message Passing Interface Input and Output (MPI-IO) 

The second method implemented in the VAMPIRE code uses collective MPI-IO routines 
to implement a single shared file for each configuration. The order of the data is not 
important for data processing and so the implementation uses collective 
mpi_write_at_all() function calls with a predefined offset for each process. In order 
to have only a single write call the data is first copied from the main spin data arrays 
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to a linear buffer. In the main code the spin data is stored as three separate arrays for 
x, y and z spin data to optimize cache performance. In addition, the user can specify 
a subset (slices) of data to output during a simulation and so not all spin data for the 
atoms in the simulation are necessarily outputted to disk. The buffer therefore 
contains serialized spin data for only the atoms to be output in xyz order to facilitate 
easier data processing. Since the number of atoms to be outputted from each process 
are fixed for the whole simulation the MPI offsets for each process are calculated once 
at the beginning of the program. The performance of the single-shared-file is generally 
good, up to 2GB/s for the largest data set size benchmarked (3 GB in total) with of 
course a minimal number of files (1 per snapshot) to process for data analysis. 
Interestingly for a fixed data size the output data rate seems independent of the 
number of output processes. While performance is good, this unfortunately means 
that the output is not scalable for strong scaling problems, and so the output time is 
around 2 seconds per snapshot for any number of cores. However, as a fraction of 
total runtime this is still small given a typical number of 500 snapshots.   

File-per-node 

The final output method we implemented is a hybrid approach, manually combining 
data within a subset of processors before outputting to disk with standard C++ write 
functions. The file-per-node method has a number of advantages over the file-per-
process and single-shared-file methods. The first is that the number of output nodes 
can be freely varied from one (as in the MPI I/O implementation) to the total number 
of processes, which can be used to achieve a balance between high performance and 
a manageable number of output files. The second advantage is the ability to select 
either binary or text formatted output for greater portability. The distributed nature 
of the files means that the file-per-node method can utilise distributed scratch storage 
on lower tier clusters where high performance parallel file systems are uncommon. 
Finally, the file-per-node method is also expected to have optimal performance on 
Blue Gene systems due to the provision of dedicated I/O nodes serving file requests 
from a large number of compute blades. Our implementation takes advantage of 
custom communicators in the MPI library to define groups of processors 
(MPI_COMM_IO) which co-operate to produce a single output file. A master process 
in the IO group collates the data from the other processes and is responsible for 
writing the file to disk. As with the single shared file implementation, the number of 
atoms from each process does not change during the simulation, and so after some 
initial book keeping during initialization the implementation simply requires a single 
MPI_Gatherv call to collect the buffers from the different processors in the IO 
communicator before outputting to disk. The file-per-node method achieved the best 
performance, with average bandwidth in excess of 30 GB/s for the optimal number 
of I/O tasks – the peak available from the hardware.  
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Performance tests on ARCHER 

To evaluate the performance and scalability of the new IO functionality we have 
performed a number of tests for different problem sizes. As stated in the introduction, 
atomistic spin dynamics simulations are typically bounded by the large number of 
integration time steps required, from 106 – 108 (100 ps – 10 ns real time) being typical 
numbers. This requirement for large numbers of steps limits the ability to simulate 
large systems to obtain useful science. We have therefore focused performance tests 
on strong scaling of medium and large scale systems likely to be suitable for running 
on ARCHER. The first test uses a small number of processors on 1-2 nodes to assess 
the relative performance of the different output methods. The benchmarks consist of 
three different problem sizes: small (1M atoms, 24 MB total), medium (27M atoms, 
648MB total) and large (125M atoms, 3GB total). The simulations are run for a small 
number of time steps and output 10 snapshots of the spin configuration, with 24 
bytes per atom. The bandwidth to disk and time for IO operations are recorded for 
each snapshot and the mean values are calculated. Note that only the actual write 
operation is timed – the reported bandwidth is without overheads such as copying to 
the data buffer. File striping is left at the default value of 4 with a block size of 1 Mb 
which may not be optimal. For the MPI-IO method there is only a single file which is 
reported as one output process, but in reality all processes in the simulation are 
calling the MPI-IO routine. The file-per-node method can scale the number of I/O 
processes in the simulation from 1 to Nprocs, and so for small scale simulations one 
can vary the number of output processes independent of the number of simulation 
processes. The average bandwidth achieved as a function of number of IO processes 
for different problem sizes is presented in Fig. 1.  



 8 

 
The first thing to note about the data is the general good performance of all the IO 
for a range of different problem sizes and different numbers of IO processes. 
Considering first the large data set (3 GB total file size per snapshot), the MPI-IO 
method achieves around 1.3GB/s bandwidth, which is a factor 3 higher than that 
achieved for a single file written from a single process. However, increasing the 
number of output processes leads to a significant increase in performance around 
7GB/s for 48 processes. Performance seems to be slightly better for the smaller 
problem sizes, reaching 12GB/s for a small single node simulation and 24 output 
processes. It is interesting that, even considering such a small amount of data there 
are perceptible increases in performance for more output processes. The conclusion 
for small simulations is therefore the more output processes the better, and fully 
populated file-per-node/file per process methods are optimal and 4-8 times faster than 
the MPI-IO method depending on problem size.  

The second test compares the scalability of MPI-IO and file-per-node methods to high 
core counts (up to 12288 cores for 512 nodes). The advantage of the file-per-node over 
file-per-process method is the vast reduction in the number of files generated during 
the simulation, which can run into millions of files of the latter for a typical 500 
snapshots and large core counts. This is particularly problematic in the strong scaling 
regime, where the data per process decreases linearly with core count. Therefore, we 
have assumed a single output process per node, but for higher core counts it may be 
desirable to reduce the number of output nodes to maintain a reasonable number of 
larger files while still maintaining high performance. Fig. 2 shows the scaling of IO 
bandwidth as a function of the number of nodes (I/O processes) in the simulation.  

	
 
Figure 1 | Scaling of mean output file bandwidth on 1-2 nodes of 
ARCHER for different problem sizes. 
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The data show much higher performance can be achieved, approaching the peak 
capability of the hardware for large problem sizes. Considering the MPI-IO method 
for the large problem size, the output bandwidth is essentially independent of the 
number of processes in the simulation. The MPI-IO method is universally worse 
performing than the file-per-process method and so in general seems to be sub-optimal 
for the problems typically encountered with the VAMPIRE code. The reason for the 
much lower performance is curious, and could be because the MPI-IO library is overly 
conservative and accumulating too much data before outputting to disk, where one 
would expect that the output bandwidth would no longer scale. The file-per process 
method scales well to 64 nodes achieving a peak mean bandwidth of 35GB/s. 
However, for this simulation the distribution of bandwidth for individual snapshots 
was large, and in some cases bandwidth over 70GB/s was reported. Clearly this 
implies caching is being used, where the data is buffered in memory before output. 
However, this is still reflected as an advantage in the simulation since once the data 
is buffered the simulation can continue, and so the effective I/O performance is 
excellent. Above 64 nodes the performance decreases monotonically, indicating 
increasing contention for file system resources given the large number of files being 
opened and decreasing amount of data per process. Therefore it is likely optimal to 
have a maximum of 64 I/O nodes for larger core counts. In terms of time, each 
snapshot takes around 2s with the MPI-IO method, and around 0.1s with the file-per-
process method with an optimal number of files. It is clear that with the new I/O 
methods the VAMPIRE code is no longer limited by I/O bandwidth, with 500 snapshots 
taking between 0.1% and 2% of a typical simulation taking 20 hours compared to 
over 99% of the runtime time with the previous implementation prior to this project. 

 
 
Figure 2 | Scaling of mean output file bandwidth to high core counts 
on ARCHER for different problem sizes. 
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Finally we tested the performance of the code for a large scale simulation with 
realistic inputs. The simulation models the dynamics of magnetic domains during 
ultrafast heat induced magnetic switching in the material GdFe. The simulation 
generated just over 918M atoms which was parallelised over 12,288 cores on 
ARCHER. During the simulation a subset of the atoms were outputted using the file-
per-node method using 64 output processes, with around 12MB of data per output 
process/snapshot. A total for 421 snapshots were written to disk over the course of 
a 2 hour simulation with a total data size of 300GB.  The output bandwidth for each 
snapshot as a function of snapshot number is shown in Fig. 3. 

 
The data show excellent effective bandwidth for the majority of the simulation 
snapshots given the small file size of 12MB, with I/O operations completed in around 
0.1s for most of the snapshots, allowing the simulation to proceed quickly. As seen 
in previous results, this is greater than the theoretical peak performance of the file 
system and so is probably due to caching the I/O operations in memory. There were 
a two regions of constrained operations around snapshot numbers 30 and 100 which 
took significantly longer than the average, with around 8s IO time for each snapshot 
in the worst case. This is likely due to contention in the file system but was generally 
a rare occurrence over the whole simulation. The realistic inputs also highlighted two 
segments of code which are not well-parallelised and caused a much longer 
initialisation time than expected, around 30 minutes. The first of these calculates the 
distribution of Gd and Fe in the simulation which is fast for small systems, but for 
large systems is slow. The second is the calculation of the halo data which is currently 
implemented as a loop over all atoms looping over all processors. For large systems 
and large core counts this is also a significant bottleneck in the program initialisation. 

 
 
Figure 3 | Output bandwidth as a function of snapshot number for a 
large scale simulation of 918M atoms. 
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Having identified these problems we plan to implement code improvements to 
address them in the near future. 

Data processing utility: VAMPIRE Data Converter (VDC) 

The new output routines lead to a natural diversity of output put data in terms of the 
number of files, their format and structure. To make data analysis and visualisation 
straightforward for users we have developed a new data processing utility (Vampire 
Data Converter, or VDC) which can read any kind of data generated by the code and 
output it as flattened data in text format or as renderable files with the PoVRAY ray 
tracer[4]. The utility works by reading a single metadata file for each snapshot which 
identifies the type and format of the data. The utility then interprets the data in the 
appropriate way, loading the data into memory. Once loaded the data can be 
manipulated to select a subset of data based on geometric or based on the spin 
configuration for example. In future we intend to add new functionality to the 
conversion utility, supporting a wider range of file formats and output options.  

Documentation and online tutorial 

Documentation of how to compile and obtain optimal performance of vampire on 
ARCHER has been included into the upcoming version 5 of the code, due for release 
later in 2017. In addition, during the project we merged the LaTeX source code for 
the VAMPIRE manual into the main GitHub repository so that documentation can 
be written alongside new features and is always up to date with the features of the 
code. This will significantly improve the sustainability of the VAMPIRE code going 
forward. Details of the new output methods in the code (file-per-node, file-per-
process and mpi-io) have also been written into the software manual, with 
descriptions of how to use the new methods and guidance on how to maximise 
performance on different hardware. For novice users we have also drafted a tutorial 
for the next iteration of the project website (to be published alongside version 5 of 
the code), walking through a simple simulation and submission script on ARCHER 
using the new output methods. 

Conclusion 

In conclusion, we have implemented major improvements to the input and output 
routines in the VAMPIRE code, showing over 1,000,000 times improvement over the 
previous implementation. Supported by new user documentation and training, this 
has enabled unprecedented large scale simulations of magnetic materials with atomic 
scale resolution and will allow  
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